Seventh Semester B.E. Degree Examination, Dec.2013/Jan.2014

Image Processing

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

- 1 a. With the deat block diagram, explain the steps in image processing. (10 Marks)
 - b. Explain the following terms as applicable to image processing with necessary graphs:
 - i) Brightness adaptation
 - ii) Weber ratio
 - iii) Mach bands

(10 Marks)

- 2 a. Discuss the role of sampling and quantization with an example.
- (08 Marks)

b. Explain the image acquisition using micro densitometer.

- (06 Marks)
- c. Explain spatial resolution and gray level resolution of an image.
- (06 Marks)

- 3 a. Describe the following terms applied to image processing:
 - i) Neighbors of a pixel
 - ii) Adjacency of pixels
 - iii) Digital path
 - iv) City-block distance measure

(04 Marks)

b. Let $V = \{0, 1\}$, compute D_e , D_4 , D_8 distance between the pixels p and q for the Fig.Q3(b).

(08 Marks)

c. For the 2 × 2 transform 'A' and the image 'U', calculate the transformed image 'V' and basis images.

$$\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \qquad \mathbf{U} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(08 Marks)

- a. Explain any four properties of two dimensional Fourier transform.
- b. Define 2-D forward and inverse discrete cosine transform and mention its properties.

(08 Marks)

(08 Mar

c. Generate the Hadamard transform H_n matrix for n = 3. Given the core matrix

$$H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
. Also, indicate its sequency.

(04 Marks)

PART - B

- With necessary graphs, explain the following spatial image enhancement operations:
 - i) Image negative
 - ii) Log transformation
 - iii) Power law transformation
 - iv) Contrast stretching

(10 Marks)

Perform histogram equalization of the 5×5 image whose data is shown in Table Q5(b).

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0
Table OS(b)								

08 Marks)

- Why Conx. a. Explain with a block diagram, the basic steps for image filtering in frequency domain.
 - b. Illustrate Homomorphic filtering approach for image enhancement. Derive the suitable result. (10 Marks)
 - Explain the basic model of image restoration process. Also, with necessary equations, explain the most common BDFs in an image processing. (10 Marks)
 - b. With necessary mathematical equations, explain inverse filtering and Wiener filtering for image restoration. (10 Marks)
 - Discuss briefly any two color models used in color image processing. (10 Marks)
 - b. Explain intensity slicing and Graylevel to color transformation as applied to pseudocolor image processing. (10 Marks)

C. S. W. W.